note :
taux d'abandon

MLOps & Machine Learning End-To-End

Le terme MLOps (Machine Learning Operations) est de plus en plus souvent employé dans la communauté data et est rapidement devenu un concept central dans la gestion des projets Data Science. Son objectif est de fournir un ensemble de pratiques et outils afin de penser, construire, et manager l’ensemble du cycle de vie d’un logiciel à base de Machine Learning. Si le déploiement et la gestion d’un modèle en production fait partie des principaux enjeux du MLOps, c’est bien l’ensemble du cycle de vie qui est concerné afin de l’optimiser et d’accélérer la création de valeur via le Machine Learning.

Cette formation MLOps a pour objectif de vous fournir toutes les clés pratiques et techniques afin de réaliser des projets Machine Learning end-to-end.

Intra entreprise HT
9000€
Inter entreprises HT
1500€
Nous contacter
2 jours
12 participants
chez Hymaïa
*finançable par l'OPCO En savoir plus

Objectifs

  • Définir les grands enjeux et piliers du MLOps
  • Comprendre les points communs et différences avec le DevOps
  • Industrialiser un projet de Machine Learning, du notebook à l’IDE
  • Monitorer, maintenir et ré-entraîner automatiquement un modèle de Machine Learning en production
  • Ajouter de l’automatisation sur l’ensemble du cycle de vie d’un projet Data Science, notamment vie de l’intégration et du déploiement continu

Public cible

  • Data Scientists
  • ML Engineers
  • Data Engineers

Prérequis

  • Être à l’aise en Python.
  • Avoir des bases en Data Science

Programme détaillé

Télécharger

MLOps : Définition et principaux enjeux

  • MLOps & Machine Learning Lifecycle
  • DevOps & MLOps : points communs et principales différences
  • Culture, Pratiques et Outils : les 3 axes de travail du MLOps
  • Framework CALMS appliqué au Machine Learning

Créer une Culture du MLOps

  • Communication et collaboration
  • Bonnes pratiques du Software Craftsmanship
  • Bonnes pratiques agiles

Étape 1 : Du notebook au projet industrialisé

Objectif : Passer de l’idée à l’industrialisation d’un projet de Machine Learning

Framing et Value Proposition

  • Machine Learning Canvas
  • Travailler sa Value Proposition
  • Identifier et anticiper les risques liés au Machine Learning

Se préparer pour l’industrialisation

  • Bonnes pratiques de structuration de ses notebooks
  • Gestion des environnements Python

Industrialiser: les clés pour devenir production-ready

  • TDD et stratégie de tests du code
  • Versioning du code

Packaging

  • Enjeux du packaging
  • Gestion des dépendances

Étape 2 : Gérer la vie du modèle en production

Objectif : Gérer son modèle en production via du monitoring, de l’orchestration, du ré-entraînement et du déploiement automatique.

Déploiement et serving de modèles de Machine Learning

  • Stratégies de déploiement de modèles
  • Stratégies pour le serving de modèles
  • Feature Store pour la gestion du Feature Engineering

Monitoring et Alerting

  • Monitorer la Data
  • Monitorer l’infrastructure
  • Monitorer les performances du modèle

Feedback loop et Ré-entrainement automatique

  • Critères pour déclencher un ré-entraînement de modèle
  • Stratégies de déploiement automatique d’une nouvelle version du modèle

Orchestration de pipelines de Machine Learning

  • Les enjeux de l’orchestration
  • Spécificités de l’orchestration de projets de Machine Learning

Gestion des artefacts liés au Machine Learning

  • Les différents artefacts nécessaires à la reproductibilité
  • Versioning des différents artefacts

Phase 3 : Automatiser l’ensemble du cycle de vie du modèle

Objectif : Automatiser chacune des étapes du cycle de vie d’un projet de Machine Learning afin de déployer automatiquement une nouvelle version d’un modèle à chaque changement de scope.

Gérer sa donnée : Qualité et versioning

  • Versioning de la donnée
  • Data Observability

Structuration du travail exploratoire

  • Experiment Tracking
  • Knowledge Repository

CI/CD appliqué au Machine Learning

  • Définition de la CI/CD dans un contexte logiciel
  • Les spécificités de la CI/CD appliquées aux pipelines de Machine Learning

Stratégie de Tests

  • Pyramide de tests
  • Les tests nécessaires à chaque étape du cycle de vie

Modalités

Modalités d'évaluation

Un questionnaire d'auto-évaluation est envoyé aux participants avant et après la formation pour mesurer leur progression.

Pendant la formation :

Les acquis sont évalués tout au long de la formation par les formateurs sous forme de Quizz en ligne.

Le·la participant·e se verra délivrer une attestation de fin de formation à l’issue de la session

Modalités d'accès

Les sessions peuvent  être programmées jusqu’ à 7  jours avant la date retenue, sous condition d’un formateur disponible et de la réception de la convention signée avant la session pour des groupes de  6 à 10 personnes .

Formateur(s)

Photos

No items found.

Financer votre formation par un OPCO

En tant qu'organisme certifié Qualopi, les formations que nous vous proposons sont finançables par l'OPCO. Trouvez l'OPCO dont vous dépendez ici

Contacts

Contact pédagogique et technique
training@hymaia.com

Contact PSH
adaptation@hymaia.com

Nous vous accompagnons dans vos projets Data & IA

De la stratégie à la mise en oeuvre en passant par l'acculturation de vos équipes, nous vous aidons à chaque étape dans la réalisation de vos projets. Découvrez nos offres en détail pour trouver la solution qui correspond à vos besoins.

Les prochains événements Hymaïa

LUN. 31 MARS
en savoir plus
Fondation Biermans-Lapôtre, Paris

AI Product Day

La première conférence dédiée aux équipes Produit qui souhaitent exploiter toute le potentiel de l’IA